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Darwin: Heritable traits that increase reproductive
success will become more common in a population.
Requires:

◮ Variation in population

◮ Offspring must be similar to parents

Mendel: Traits ‘determined’ by genes (factors).

◮ Genes occur in different types (alleles)

◮ Offspring inherit genes from parents
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Complex traits?

Fisher (1918) showed that observations
of biometricians were consistent with
traits like height being the result of a
large number of Mendelian factors, each
of small effect, plus some environmental
noise.

Toy example: M genes, each with 2 alleles, effects ±1/
√
M on

trait, say. Genetic component trait value

Z = z0 +

M∑

l=1

ηl√
M
,

where ηl = ±1 with equal probability.
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Fisher and natural selection

Fisher’s infinitesimal model: the (genetic component of the) trait
value of the offspring of two unrelated parents is the mean of the
parental trait values plus a normally distributed error with mean
zero and variance the additive genetic variance.

Fisher’s fundamental theorem of natural selection: the rate of
increase in mean fitness is proportional to the additive genetic
variance in fitness.

“Natural selection is a mechanism for generating an exceedingly
high degree of improbability.”



The basic model

Trait value = genetic
︸ ︷︷ ︸

Z

+ non-genetic
︸ ︷︷ ︸

E

For today’s purposes we ignore environmental component E.

Genetic component normally distributed; mean average of values in
parents;

Z ∼ N
(
z1 + z2

2
, V0

)

In a large outcrossing population, V0 = constant, otherwise
decreases in proportion to relatedness.



The simplest case

Large outcrossing population. Z ∼ N
(
z1+z2

2 , V0
)
.

With purely random mating (neutral trait), the trait distribution in
the population as a whole rapidly converges to a Gaussian with
variance 2V0 (Bulmer, 1971).

If variance in parental population is V1, that of offspring is

V1
2

+ V0,

At equilibrium, this is V1, so V1 = 2V0.

Half variance is within families, half between.
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THE GENETIC COMPONENTS WITHIN FAMILIES ARE
NORMALLY DISTRIBUTED. THE DISTRIBUTION ACROSS
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IN GENERAL THE INFINITESIMAL MODEL ONLY SAYS THAT
THE GENETIC COMPONENTS WITHIN FAMILIES ARE
NORMALLY DISTRIBUTED. THE DISTRIBUTION ACROSS
THE WHOLE POPULATION MAY BE FAR FROM NORMAL.

Trait distributions within families are normally distributed, with a
variance-covariance matrix that is determined entirely by that in an
ancestral population and the probabilities of identity determined by
the pedigree.

As a result of the multivariate normality, conditioning on some
trait values within the pedigree has predictable effects on the mean
and variance within and between families.
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An aside on common ancestors

Theorem (Chang 1999)
Let τN be time to MRCA of population size N evolving according
to diploid Wright-Fisher model (fixed population size, parents
picked uniformly at random with replacement).

τN
log2N

P−→ 1 as N → ∞.

Theorem (Chang 1999)
Let UN be time until all ancestors are either common to whole
population or have no surviving progeny.

UN

1.77 log2N

P−→ 1 as N → ∞.
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An aside on common ancestors

Theorem (Chang 1999)
Let τN be time to MRCA of population size N evolving according
to diploid Wright-Fisher model (fixed population size, parents
picked uniformly at random with replacement).

τN
log2N

P−→ 1 as N → ∞.

Theorem (Chang 1999)
Let UN be time until all ancestors are either common to whole
population or have no surviving progeny.

UN

1.77 log2N

P−→ 1 as N → ∞.

Contrast to timescales of N generations for Kingman’s coalescent.
There are many routes through the pedigree.



Pedigrees and matrices

�Time has turned around in these pictures!!!

Each individual has two parents in the previous generation.

No descendants Ancestral to whole
population

Present

Selfing

21 3 4 5



Pedigrees and matrices

Pedigree spanning t generations ⇔ random matrices M0, . . . ,Mt−1.

The ith row of Mt specifies parents of individual labelled i in
generation t before the present.

Present

21 3 4 5

No need for constant population size
M0 =









1
2 0 1

2 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
0 0 1

2 0 1
2

0 0 0 1
2

1
2











Selfing

. . . or when there is selfing

21 3 4 5

t=3

No descendantsSelfing

M3 =









1 0 0 0 0
1
2 0 1

2 0 0
1
2 0 1

2 0 0
0 0 1

2
1
2 0

0 0 0 1
2

1
2











Haploids versus diploids

Two models:

◮ Haploids ❀ mate to produce diploids ❀ immediate meiosis
❀ haploids;

◮ Diploids ❀ haploid gametes via meiosis ❀ immediately fuse
❀ diploids.

The distinction matters under selection on the trait; conditioning
on the trait provides information about the whole genotype.



The probability of identity

Write Fij(t) for probability homologous genes in individuals
labelled i, j in generation t descend from the same ancestral gene.

◮ Haploid case

Fij(t) =
∑

k,l

Mik(t)Mjl(t)Fkl(t− 1),

◮ Diploid case

Fij(t) =
∑

k,l

Mik(t)Mjl(t)F
∗

kl(t),

F ∗

kl = Fkl if k 6= l, F ∗

kk =
1

2
(1 + Fkk) .



The infinitesimal model

Let

1. P(t) denote the pedigree relationships between all individuals
up to and including generation t;

2. Z(t) denote the traits of all individuals in the pedigree up to
and including the tth generation.

Conditional on P(t) and Z(t−1), ([1], [2] denote parents)

(

Zj −
Zj [1] + Zj[2]

2

)

j=1,...,Nt

is (approximately) a mean zero multivariate normal with diagonal
covariance matrix Σt.

(Σt)jj = segregation variance among offspring of the parents of
individual j.



Why might it be a reasonable model?

Additive traits in haploids (no mutation)
M = number of (unlinked) loci affecting trait.

◮ Trait value in individual j:

Zj = z̄0 +

M∑

l=1

1√
M
ηjl,

where z̄0 = average value in ancestral population.



Why might it be a reasonable model?

Additive traits in haploids (no mutation)
M = number of (unlinked) loci affecting trait.

◮ Trait value in individual j:

Zj = z̄0 +

M∑

l=1

1√
M
ηjl,

where z̄0 = average value in ancestral population.

◮ Ancestral population. η̂jl i.i.d (for different j), say.



Reproduction

[1] and [2] refer to the first and second parents of an individual.

◮ ηjl[1] is the scaled allelic effect at locus l in the ‘first parent’
of the jth individual. Similarly, Zj[1] will denote the trait
value of the ‘first parent’ of individual j.

◮ Write Xjl = 1 if the allelic type at locus l in the jth individual
is inherited from the ‘first parent’ of that individual; otherwise
it is zero. P[Xjl = 1] = 1/2 = P[Xjl = 0].

Zj = z̄0 +
1√
M

M∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]}

=
Zj [1] + Zj[2]

2
+

1√
M

M∑

l=1

(1

2
−Xjl

)(

ηjl[2]− ηjl[1]
)

.



Conditioning

We would like to derive the distribution of trait values in
generation t conditional on knowing P(t) and Z(t−1).

Zj =
Zj [1] + Zj[2]

2
+

1√
M

M∑

l=1

(1

2
−Xjl

)(

ηjl[2]− ηjl[1]
)

.

Key: Need to be able to calculate the distribution of ηjl[1]
conditional on Z(t−1) and show that it is almost unaffected by the
conditioning.

Then E[(η
[1]
jl − η

[2]
jl )

2] ≈ 2(1 − F[1][2])var(η̂l) ❀ variance among
offspring reduced proportional to probability of identity.



Back to our toy example

Suppose ηl are i.i.d. with ηl = ±1 with equal probability, z̄0 = 0.

Z =
1√
M

M∑

l=1

ηl



Back to our toy example

Suppose ηl are i.i.d. with ηl = ±1 with equal probability, z̄0 = 0.

P[η1 = 1|Z = k/
√
M ] =

P

[
∑M

l=1 ηl = k
∣
∣
∣ η1 = 1

]

P

[
∑M

l=1 ηl = k
] P [η1 = 1]

=
P

[
∑M

l=2 ηl = (k − 1)
]

P

[
∑M

l=1 ηl = k
] P [η1 = 1]

=
1

2M−1

1
2M

( M−1
(M+k−2)/2

)

(
M

(M+k)/2

) P [η1 = 1]

=

(

1 +
k

M

)

P [η1 = 1] .



Toy example continued

If scaled allelic effects are i.i.d. Bernoulli,

P

[

η1 = 1
∣
∣
∣Z =

k√
M

]

=

(

1 +
k

M

)

P [η1 = 1] .

For a ‘typical’ trait value, k/M = O(1/
√
M).

For extreme values (k = ±M), the trait gives complete
information about the allelic effect at each locus.

For ‘typical’ k, the distribution of η1 is almost unchanged because
there are so many different configurations of allelic effects that
correspond to the same trait value.



The infinitesimal model

Conditional on P(t) and Z(t−1),

(

Zj −
Zj [1] + Zj[2]

2

)

j=1,...,Nt

converges (in distribution) to mean zero multivariate normal with
diagonal covariance matrix Σt.

(Σt)jj = segregation variance among offspring of the parents of
individual j.
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Adapting to a new environment

◮ migration from a source
population

◮ growth requires adaptation

◮ chance that a single migrant establishes;

◮ time to establishment with steady migration;

◮ stationary distribution of trait and population size.



Adapting the infinitesimal model

Large source population, trait values ∼ N (z̄s, 2V ).

M (unrelated) migrants enter population in each generation.

N(t) population size in generation t, z(t) mean trait value.

Before migrants arrive, number in next generation Poisson with
expectation N(t)W , where W mean fitness across offspring of
random matings.

If W < 1, then population only maintained by immigration.



Nick’s model continued

Offspring of individuals i, j, have mean trait value given by the
midparent value, variance:

◮ haploid parents Vij = V (1− Fij),

◮ diploid parents Vij = V (1− (Fii + Fjj)/2).

Assume the fitness of an individual with trait value z is eβz.

N(t)W =
1

N(t)

∑

i,j

exp

(

β
(zi + zj)

2
+
β2

2
Vij

)

.



Nick’s model continued

Offspring of individuals i, j, have mean trait value given by the
midparent value, variance:

◮ haploid parents Vij = V (1− Fij),

◮ diploid parents Vij = V (1− (Fii + Fjj)/2).

Assume the fitness of an individual with trait value z is eβz.

N(t)W =
1

N(t)

∑

i,j

exp

(

β
(zi + zj)

2
+
β2

2
Vij

)

.

Expect density dependent fitness and stabilising selection to
ultimately limit population size; assuming established before these
are significant.



A single migrant, trait value z0 (diploid)

-� -� �
����

-�

��
-�

�����

����

���

�

�

-� -� -� -� � �
����

-�

��
-�

�����

����

���

�

�

Probability reach population
size ≥ N = 100. Source pop-
ulation N (z̄s, 1), β = 0.125,
0.25, 0.5, 1, 2 (bottom to top).

β = 0.25, 2. Solid curves, z0 =
z̄s. (Far right homozygous.) Black
dashed curves, z0 ∼ N (z̄s, 1); grey
dashed homozygous immigrant (pop-
ulation cannot evolve).



A single migrant, trait value z0 (diploid)
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Probability reach population
size ≥ N = 100. Source pop-
ulation N (z̄s, 1), β = 0.125,
0.25, 0.5, 1, 2 (bottom to top).

β = 0.25, 2. Solid curves, z0 =
z̄s. (Far right homozygous.) Black
dashed curves, z0 ∼ N (z̄s, 1); grey
dashed homozygous immigrant (pop-
ulation cannot evolve).

Establishment feasible from z̄s 3 or 4 SD’s below threshold for
growth; necessary change in z contributed to similar degree by
chance immigrant unusually fit,and subsequent evolution



Successful establishment

z0 = −2, β = 0.25.
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Trait values of
each individual
through time; red
line = population
mean.

Population size Variance, 2V , and
heterozygosity,
1− F (solid, lower
dashed).



Successful establishment

z0 = −2, β = 0.25.

�� �� ��
�

-�

-�

�

�

�

� �� �� ��
�

�

��

��

���

�

� �� �� ��
�

����

����

���

���

	
 �-�
 �-�����

Trait values of
each individual
through time; red
line = population
mean.

Population size Variance, 2V , and
heterozygosity,
1− F (solid, lower
dashed).

Upper curve on right shows the predicted heterozygosity if there

were no selection, based on the population size:
∏

t

(

1− 1
2Nt

)

.



Steady migration: a ‘deterministic’ model

Assume that the trait distribution across the whole population is
Gaussian. NOT a consequence of using the infinitesimal model.

First approximation: suppose population size and trait
mean/variance evolve deterministically.

Each diploid migrant carrries half of the genetic variance in the
source population, so modest rates of migration into a small ‘sink’
population can maintain high genetic variance.

Denote within family variance by V ∗, assumed constant irrespective
of origin of parents. (i.e. Assume F = 0, but can be a bit more
sophisticated. Recall variance across population will then be 2V ∗.)



A recursion

The distribution of traits across the population ∼ N (z̄, 2V ∗), so

W = exp
(
βz̄ + β2V ∗

)
,

After reproduction and the subsequent migration,

N(t+ 1) =M +N(t) exp
(
βz̄(t) + β2V ∗

)
;

z̄(t+ 1) =
1

N(t+ 1)

(

Mz̄s +N(t)E[zeβz ]
)

,

(expectation is w.r.t. distribution of trait among offspring before
selection, calculated by differentiating W w.r.t. β).



New coordinates

N(t+ 1) =M +N(t) exp
(
βz̄(t) + β2V ∗

)
;

z̄(t+ 1) = z̄(t) + 2βV ∗

(

1− M

N(t+ 1)

)

− M

N(t+ 1)

(
z̄(t)− z̄s

)
.



New coordinates

N(t+ 1) =M +N(t) exp
(
βz̄(t) + β2V ∗

)
;

z̄(t+ 1) = z̄(t) + 2βV ∗

(

1− M

N(t+ 1)

)

− M

N(t+ 1)

(
z̄(t)− z̄s

)
.

Set n = N/M , α = β
√
2V ∗ and y = (z̄ − z̄s)/

√
2V ∗.



New coordinates

N(t+ 1) =M +N(t) exp
(
βz̄(t) + β2V ∗

)
;

z̄(t+ 1) = z̄(t) + 2βV ∗

(

1− M

N(t+ 1)

)

− M

N(t+ 1)

(
z̄(t)− z̄s

)
.

Set n = N/M , α = β
√
2V ∗ and y = (z̄ − z̄s)/

√
2V ∗.

n(t+ 1) = 1 + n(t)Wse
αy(t), y(t+ 1) = (y(t) + α)

(

1− 1

n(t+ 1)

)

,

Ws = exp
(
βz̄s + β2V ∗

)

(mean growth rate of the source population in the new conditions)



Critical behaviour

n(t+ 1) = 1 + n(t)Wse
αy(t), y(t+ 1) = (y(t) + α)

(

1− 1

n(t+ 1)

)

,

◮ If Ws > Ws,crit, population size and trait increase together,
regardless of M .

◮ If Ws < Ws,crit, population may be unable to grow, regardless
of how large is M ; instead, it is maintained by migration as a
poorly adapted ‘sink’.



The critical value

n(t+ 1) = 1 + n(t)Wse
αy(t), y(t+ 1) = (y(t) + α)

(

1− 1

n(t+ 1)

)

,

At equilibrium y(t) = y(t+1) = α(n− 1), i.e., ycrit = α(ncrit − 1).

Writing f(n) = 1 + nWse
α2(n−1), must solve

n = f(n), 1 = f ′(n).

Yields quadratic in n, whose positive solution is

ncrit =
α2 +

√
α4 + 4α2

2α2
=

1

2

(

1 +
√

1 + 4/α2
)

.



Back to original variables

Ncrit =
M

2

(

1 +
√

1 + 2/(β2V ∗)
)

,

Ws,crit =
ncrit − 1

ncrit
e−α2(ncrit−1) =

(

1− M

Ncrit

)

e−α2(Ncrit−M)/M ,

βz̄s,crit = −1

2
α
(√

4 + α2
)

− log

(

α+
√
4 + α2

−α+
√
4 + α2

)

.

For α = β
√
2V ∗ ≪ 1, βz̄s,crit ∼ −2α.

For α≫ 1, βz̄s,crit ≈ −α2/2− 2 log α.



A continuous time approximation

dN(t)

dt
= M + βz̄(t)N(t);

dz̄(t)

dt
= 2βV ∗

(

1− M

2N(t)

)

− M

N(t)
(z̄(t)− z̄s).



A continuous time approximation

dN(t)

dt
= M + βz̄(t)N(t);

dz̄(t)

dt
= 2βV ∗

(

1− M

2N(t)

)

− M

N(t)
(z̄(t)− z̄s).

Or, adding demographic stochasticity/ sampling drift,

dN(t) =
{

M + βz̄(t)N(t)
}

dt+
√

N(t)dW 1
t ;

dz̄(t) =
{

2βV ∗

(

1− M

2N(t)

)

− M

N(t)
(z̄(t)− z̄s)

}

dt

+

√

2V ∗

N(t)
dW 2

t .



Demographic stochasticity/sampling drift

Introduce the potential, U :

U =M logN + β(N − M

2
)z̄ − M

4V ∗
(z̄ − z̄s)

2 .

dN =
{

N
∂U

∂N

}

dt+
√
NdW 1

t ,

dz̄ =
{2V ∗

N

∂U

∂z̄

}

dt+

√

2V ∗

N
dW 2

t



The ‘stationary distribution’

If there were a stationary distribution, it would satisfy

ψ ∝ e2U

N
= N2M−1 exp

(

β(2N −M)z̄ − M

2V ∗
(z̄ − z̄s)

2

)

.

Diverges for large N , z̄; should approximate the density near to a
stable ‘sink’ equilibrium, when that exists.

◮ N2M−1, migration that increases population size;

◮ eβ(2N−M)z̄ , directional selection on the trait;

◮ e−M(z̄−zs)
2/2V ∗

, gene flow that pulls the trait mean towards
the source.



More on the stationary distribution

For given N , the trait mean is normally distributed, with variance
V ∗/M , and mean

E [z̄] = z̄s + βV ∗(2N −M)/M ;

Deterministic equilibrium in which selection 2βV ∗(1−M/2N)
increases the trait mean, but is opposed by gene flow at rate M/N .



More on the stationary distribution

For given N , the trait mean is normally distributed, with variance
V ∗/M , and mean

E [z̄] = z̄s + βV ∗(2N −M)/M ;

Deterministic equilibrium in which selection 2βV ∗(1−M/2N)
increases the trait mean, but is opposed by gene flow at rate M/N .

Integrating over z̄, distribution of N proportional to

N2M−1 exp

(

β2(2N −M)2
V ∗

2M
+ β(2N −M)z̄s

)

.

If M > 1/2 and z̄s < −2
√

V ∗(1− 1/(2M)) + βV ∗/2 ∼ −2
√
V ∗,

distribution has a peak at low density, and with z̄ < 0.
Metastable ‘sink’ population maintained by gene flow despite
maladaptation.
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◮ One individual can establish even if z̄s is as much as three or
four standard deviations below the threshold for growth;



Lessons from our crude analysis

◮ One individual can establish even if z̄s is as much as three or
four standard deviations below the threshold for growth;

“Natural selection is a mechanism for generating an exceedingly
high degree of improbability.”



Lessons from our crude analysis

◮ One individual can establish even if z̄s is as much as three or
four standard deviations below the threshold for growth;

“Natural selection is a mechanism for generating an exceedingly
high degree of improbability.”

◮ if the mean in the source population is too low, the
population may be trapped in a ‘sink’;



Lessons from our crude analysis

◮ One individual can establish even if z̄s is as much as three or
four standard deviations below the threshold for growth;

“Natural selection is a mechanism for generating an exceedingly
high degree of improbability.”

◮ if the mean in the source population is too low, the
population may be trapped in a ‘sink’;

◮ faster migration may impede adaptation;



Lessons from our crude analysis

◮ One individual can establish even if z̄s is as much as three or
four standard deviations below the threshold for growth;

“Natural selection is a mechanism for generating an exceedingly
high degree of improbability.”

◮ if the mean in the source population is too low, the
population may be trapped in a ‘sink’;

◮ faster migration may impede adaptation;

◮ the population can escape and adapt to a new optimum; it
will then be partially reproductively isolated (a model for
speciation in spite of gene flow);



Lessons from our crude analysis

◮ One individual can establish even if z̄s is as much as three or
four standard deviations below the threshold for growth;

“Natural selection is a mechanism for generating an exceedingly
high degree of improbability.”

◮ if the mean in the source population is too low, the
population may be trapped in a ‘sink’;

◮ faster migration may impede adaptation;

◮ the population can escape and adapt to a new optimum; it
will then be partially reproductively isolated (a model for
speciation in spite of gene flow);

Work of Sacha Rybaltchenko on a string of colonies strengthens
this last point, but note reduction in variance impedes ability to
further adapt.


